Quantcast
Channel: The Computer Students » source code
Viewing all articles
Browse latest Browse all 9

C Program implementing the Bisection Method ( Numerical Computing )

$
0
0


(adsbygoogle = window.adsbygoogle || []).push({});

First read Bisection Method Algorithm and Flowchart [Numerical Computing]

Method 1:
This program in C is used to demonstrate bisection method.

Bisection method is one of the many root finding methods.
In this method we are given a function f(x) and we approximate 2 roots a and b for the function such that f(a).f(b)<0.
Then we find another point
c=(a+b)/2
if f(c)==0
then root=c;
else
if f(a).f(c)<0
b=c;
if f(b).f(c)<0
a=c;
and we repeat these steps for the given number of iterations.

C Program implementing the Bisection Method

#include"stdio.h"
#include"math.h"



double F(double x)
{
    return(pow(x,3)+3*x-5);//This return the value of the function
}
int main()
{
    printf("This program illustrates the bisection method in C\n");
    printf("x^3 + 3*x - 5 = 0\n");
    double x0,x1;
    printf("Enter the first approximation to the root\n");
    scanf("%lf",&amp;x0);
    printf("Enter the second approximation to the root\n");
    scanf("%lf",&amp;x1);
    int iter;
    printf("Enter the number of iterations you want to perform\n");
    scanf("%d",&amp;iter);
    int ctr=1;
    double l1=x0;
    double l2=x1;
    double r,f1,f2,f3;
    //We check if the initail approximations are the root or not
    if(F(l1)==0)
    r=l1;
    else
    if(F(l2)==0)
    r=l2;
    else
    {
    while(ctr&lt; =iter)
    {//this is an implementation of the algorithm mentioned above
        f1=F(l1);
        r=(l1+l2)/2.0;
        f2=F(r);
        f3=F(l2);
        if(f2==0)
        {
            r=f2;
            break;
        }
        printf("The root after %d iteration is %lf\n",ctr,r);
        if(f1*f2&lt;0)
        l2=r;
        else
        if(f2*f3&lt;0)
        l1=r;
        ctr++;
    }
    }
    printf("The approximation to the root is %lf",r);
    getch();
}
/*A sample run of the program was carried out and the results were found as:-
This program illustrates the bisection method in C
x^3 + 3*x - 5 = 0
Enter the first approximation to the root
1
Enter the second approximation to the root
2
Enter the number of iterations you want to perform
9
The root after 1 iteration is 1.500000
The root after 2 iteration is 1.250000
The root after 3 iteration is 1.125000
The root after 4 iteration is 1.187500
The root after 5 iteration is 1.156250
The root after 6 iteration is 1.146025
The root after 7 iteration is 1.148438
The root after 8 iteration is 1.152344
The root after 9 iteration is 1.154297
The root is 1.154297
*/

Method 2: Source Code for Bisection Method
for equation f(x) = x^3 – 4*x – 9

#include "math.h"
#include "conio.h"
float fun (float x)
{
    return (x*x*x - 4*x - 9);
}
void bisection (float *x, float a, float b, int *itr)
/* this function performs and prints the result of one iteration */
{
    *x=(a+b)/2;
    ++(*itr);
    printf("Iteration no. %3d X = %7.5f\n", *itr, *x);
}
void main ()
{
    int itr = 0, maxmitr;
    float x, a, b, allerr, x1;
    printf("\nEnter the values of a, b, allowed error and maximum iterations:\n");
    scanf("%f %f %f %d", &amp;a, &amp;b, &amp;allerr, &amp;maxmitr);
    bisection (&amp;x, a, b, &amp;itr);
    do
    {
        if (fun(a)*fun(x) &lt; 0)
            b=x;
        else
            a=x;
        bisection (&amp;x1, a, b, &amp;itr);
        if (fabs(x1-x) &lt; allerr)
        {
            printf("After %d iterations, root = %6.4f\n", itr, x1);
            return 0;
        }
        x=x1;
    }
    while (itr &lt; maxmitr);
    printf("The solution does not converge or iterations are not sufficient");
    return 1;
}

The post C Program implementing the Bisection Method ( Numerical Computing ) appeared first on The Computer Students.


Viewing all articles
Browse latest Browse all 9

Trending Articles